About three years ago we were invited to evaluate a video for use with young people as part of an alcohol education course. The video is called 'The Extra Guest' and it portrays a teenage party where the parents leave the youngsters to get on with it — which they do. The situations which develop are numerous and recognizable by anyone who has experienced the effects of alcohol on young people, but they also reflect common social predicaments.

We were impressed with the general quality of the video, and also with its value as a teaching aid for PSE, regardless of whether or not 'alcohol' was the focus. The evaluation involved developing a set of instruments (questionnaires, role-play situations, teachers' notes) which we tried out with numerous pupils and their teachers before releasing them.

The latest development is a colour factual 8-page leaflet about alcoholic drink, its effects, and how to use it sensibly. This will be given to the pupils so as to carry the alcohol messages into the home. Contact the Unit for further details of the 'Extra Guest'.

We are now back at St Luke's, the University of Exeter's School of Education. We shall raise our 'paramectant', but it is good to be near valued colleagues once more. Our new building is on the site of the old one, at the Baring Crescent entrance, and readers are very welcome to pay us a visit!
Conversely, the fact that even in a situation where there is only one sexual partner, infection can still occur. The notion of the tracing of contacts can easily be demonstrated.

In situations where the group is made up from, say, four subgroups, observations can be made comparing exchanging behaviour with the extent of infection. For example, a subgroup which contains not a single 'infected' individual, and which only exchanges within itself, will at the end of the simulation remain uninfected. On the other hand, another subgroup, also not infected at the start but being more open with their exchanges, will end up with a high rate of infection in its population. Parallels can be drawn here with regard to variations of centre population in the county and the ease of transport by which disease can be spread more quickly.

Requirements
1. A reasonably large venue (such as the school hall), and a large group of participants. The simulation should be conducted with a normal size of class, but it is more realistic with a larger group. The results shown in this article were obtained using half a year group, comprising four classes and about a hundred individuals assembl ed in the school hall.
2. The exchange cards previously prepared with the exchange numbers.
3. A pen or pencil per individual.
4. An OHP and transparencies prepared with graph axes, and OHP pens. Another transparency of the exchange card to assist in the explanation of the rules.

How the game is played
The more participants, the better. Initially they are all allocated a seat or a place on the floor to which they return after each round.

Each player receives a card (see illustration), with the numbers 1–10 representing the ten rounds. There is also a separate number which we call x. This is the number of rounds in which the player can 'exchange'. To begin with, each player chooses which rounds will be chosen for making exchanges and makes a mark against the appropriate numbers on the card.

A few cards have a circle around x. These people are 'infected'.

At the commencement of each round, those players selecting that round get up and move about on the whining that they choose a partner and exchange numbers. If none of the partners has a circle around x, the other players circle the number they receive — they have been 'infected'. In future exchanges they too will pass the circle on.

A record is kept of the way the circles spread. This can be done by the players recording the round when they became 'infected', or by taking a tally in between rounds.

(The following article describes the use of the game with 4th-year pupils. — Ed.)

Sylvia Kennedy

How we ran the AIDS game

Estover School, Plymouth, the pack reflects the school's concern to provide materials which require active student involvement. We were interested in the Estover team's aim to present these issues:

- The large potential increase in infected persons once the HIV virus enters a population
- The risks inherent in adopting a casual attitude to sexual relationships
- The reduction of risk brought about by the adoption of safer sex

We were particularly keen to try out the central exercise, which we introduced to our 120 4th-year pupils as the Exchange Game. On this occasion we did not inform them that the game was related to AIDS until the discussion at the end of the exercise. We felt that the impact of the main issues would come across more vividly in this way: however Graham Thomas tells us that there are advantages in declaring the real purpose at the outset and that it has been run successfully in this way.

Playing the game
The simulation is based on a series of exchanges carried out by each participant. It proceeds in such a way that, using the exchange numbers on their card, some pupils will exchange on a few occasions only while others may exchange up to a maximum of ten times. This frequency of exchange is used to simulate the number of sexual relationships entered into.

In our pilot, three of the pupils' exchange numbers were tagged with circles and instructions were given to pass on, at each subsequent exchange, any circles received. Thus the circles, simulating the HIV, could be traced through the population. The whole year group entered into the game enthusiastically, and the Drama Hall was soon alive with activity: a whistle is a useful control extra when directing movement from one exchange to the next. The instructions had appeared initially but repeated explanation before each exchange clarified the procedure and the simulation ran very smoothly.

We realised the importance of clarifying what had taken place during the exercise: it is at this point that the issues are highlighted. We had wondered if, once the game was over, the participants might switch off: this did not happen in this case because the discussion itself is conducted in an active way. Circled ('infected') members of the group are identified round by round whilst a graph is plotted on an OHP transparency to show the spread of the infection.

The issues
Our tutor felt that the simulation was very effective in modelling the kinds of phenomena that would occur in a real-life transmission through a population. In our case it demonstrated the high increase in infected people once the virus has gained a foothold. It also showed a clear relationship between the number of 'sexual partners' and the risk of infection.