SHEU publications

No Worries! Young people and mental health
A study of the worries and concerns that affect young teenagers in our society, based on data collected by the Unit between 1991 and 1997. £10.00

The Assessment of Health Needs at the Community Level
How health authorities can help schools to review the needs of their pupils. £2.50

Very Young People in 1993
A study of 18,000 pupils aged 9-12. Responses to the questions in the Primary Health Related Behaviour Questionnaire are presented in table form, together with commentary and histograms. Note: Young People in 1997 presents further primary data for that year. £0.00

Very Young People in 1991
A study of 7,852 pupils aged 8-11. Responses to the questions in the Primary Health Related Behaviour Questionnaire are presented in tabular form, together with commentary. £0.00

Young People and Alcohol: The link and abuse
A study of the ‘alcohol environment’ of 6313 Year 8 and 10 pupils. In addition to baseline information about amounts, frequency, and types of drinks consumed, the report examines alcohol-related domestic aggression and its relation to family structure. £0.50

Young People andIllegal Drugs 2000
This report surveys all our drugs data back to 1997 and suggests that young people’s contact with drugs may have peaked in 1996-98. £0.50

Youth Usage and Violent Drugs in 1998
This report contains the first information derived by the Unit on habitual use, and first ever information of any kind by young people in the 11-15 age range. £7.00

Healthy School Series
This set of five books are ‘role models’ from the successful Preparing for Life Primary Schools Project. They have been re-organised into an easy to use Healthy School themes. The principal authors are experienced primary school teachers who have used SHEU materials in their schools. They bring fresh insights into how health-related behaviour data can be used in primary schools, not only within the classroom and the playground, but to encourage closer links between the school, the parents, and the local community. Each resource book studies a topic from these various viewpoints, and includes an overview, suggestions for policy review and action, lesson themes, reproducible workbooks and scenarios, and in some cases model letters. The complete series is as follows. Safety, Drugs Education, Emotional Health & Well Being, Physical Activity, Healthy Eating

Cash and Carry
Young people’s reports on the carrying of offensive weapons and also sound alarms and other passive protection: by themselves and friends. £5.00

Young People into the Nineties
(1) Doctor and dentist. £1.50
(2) Health - the ‘survey of the decade’. A study of 125,903 young people between the ages of 11 and 16 over the period 1984-1995. Note that Young People in 1999 reveals further behaviour changes in young people, in £3.50 for both books.

Toothbrushing in Adolescence
Associations between toothbrushing, dentist visit and motivation for brushing teeth, compared to gender, region, family status, sports activity and self-esteem. £0.00

Cash or official purchase order number required. Cheques should be made payable to The Schools Health Education Unit. Add £2.50 p&p if order value is less than £25

The paper is based on interviews and questionnaires with 71 healthy, pain-free female athletes. Incidents of discomfort, fracture, concussion and even come appear to be both expected and accepted.

Bernard Masters in private chaplaincy practice.
This research was undertaken at the Centre for Complementary Health Studies, University of Exeter. This project was supported by the Armitage-Morgan Trust and the European Chiropractic Union.

Thanks are extended to Dr David Pope and SHEU for their help and support.

Certain sporting activities are seen to be dangerous by the medical profession but the sporting participants do not share the same view.

Cassualty officers view certain sporting activities to be dangerous, (Schmidt & Howard 1989; Junj 1989; Hoyland-McIntyre et al., 1992; Chirita et al. 1994). They report that a range of damage is seen from contusions, limb and spinal fractures and even coma. Male participants who practice collision sports and contact sports are seen to be equally to female home riders and half a million visitors to U.S. emergency rooms were from cycle injuries (Mellon 1991). The medically accepted view as to the consequence of these activities is apparently not shared by the sporting participants. A survey was undertaken to question athletes about their sporting history, attitudes and problems with their sport.

Method
As part of a larger epidemiologic study, 71 fit, healthy, pain-free female athletes, (Table 1), completed a questionnaire on their sporting history. Coupled with unstructured interviews they were asked to describe problems encountered with sporting performance related to sporting comfort, health, injuries and areas of pain. Frequencies and ages in participation in sport were questioned. Six sports were targeted that were judged to involve greatly the hip, joints, [gymnastics, fencing, dancing, martial arts, exercise/pedal bike riding and horse riding].

As only two subjects had fenced, this sport was not included in the data. Of the group, 49 were housewives, 18 were athletes of varying disciplines and 4 sportswomen who were native to equestrian sports. Paralleling industrial injuries, covenants must be employed as numbers of those who have left the sport due to injury is not known and this may confound the study (Allyn 1982).

Table 1. Respondent’s age (mean age 21, range 16-27 years, range 16-36 years)

<table>
<thead>
<tr>
<th>Year</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>5</td>
</tr>
<tr>
<td>1981</td>
<td>3</td>
</tr>
<tr>
<td>1982</td>
<td>4</td>
</tr>
</tbody>
</table>

The Address for correspondence is: SHEU, Renton House, Chesham Road, Esher, Surrey KT10 9AY Tel: 01372 603727 Fax: 01372 617809 Email: sheu@sheu.org.uk www.sheu.org.uk

Education and Health
Vol. 21 No.3, 2003

The SHEU team is here to help!

Director
John Balding

Orders for publications, and general enquiries
Michele Driessen

Research Manager
Dr David Regis

Data Preparation Manager
Di Bish

Survey Manager
Angela Balding

Projects Manager
Cheryl Lewis

Marketing and Publications Manager
David McInnes

No correspondence is: SHEU, Renton House, Chesham Road, Esher, Surrey KT10 9AY Tel: 01372 603727 Fax: 01372 617809 Email: sheu@sheu.org.uk www.sheu.org.uk

Education and Health
Vol. 21 No.3, 2003

Bernard Masters

Sport as a health risk
Sport is promoted as a healthy pastime, but discomfort and trauma appeared to be both expected and accepted suggesting that pain is deemed to be normal for sport.
The injuries sustained by the athletes who rode horses were reported as broken limbs and skull fractures. One subject did not think she had any lasting effect from her accident even though she had been in a coma for three days. “I got over that a long time ago,” OK.” Caution must be applied as the volunteers’ mean age was 21 years and conclusions for assessment of effect on long-term health are necessarily speculative (see Table 2 & Figure 1).

Table 2. Those reporting effects of accidents in sport

<table>
<thead>
<tr>
<th></th>
<th>no difficulties</th>
<th>slight problems</th>
<th>some problems</th>
<th>great problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance in chosen sport</td>
<td>80%</td>
<td>25%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Performance in physical exercise</td>
<td>75%</td>
<td>25%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Figure 1. Those reporting accidents in sport

<table>
<thead>
<tr>
<th></th>
<th>Moderate to severe 16%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor accidents 0%</td>
<td></td>
</tr>
<tr>
<td>Major accidents 4%</td>
<td></td>
</tr>
<tr>
<td>Horse can’t remember 0%</td>
<td></td>
</tr>
</tbody>
</table>

Comfort Rating and Discomfort Index

The data from Table 3 show numbers who performed in a particular sport and those who were pain free as well as the areas on the body that gave discomfort.

Table 3. Number of athletes, number of pain-free individuals, areas and totals of pain in the five sports

<table>
<thead>
<tr>
<th>No. = participants in this sport</th>
<th>Total = cumulative number of painful areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Proportion of pain-free area to the number of participants.</td>
</tr>
<tr>
<td>Sport</td>
<td></td>
</tr>
<tr>
<td>Gymnastics</td>
<td>34</td>
</tr>
<tr>
<td>proportion</td>
<td>0.73</td>
</tr>
<tr>
<td>Martial Arts</td>
<td>34</td>
</tr>
<tr>
<td>proportion</td>
<td>0.73</td>
</tr>
<tr>
<td>Horse riding</td>
<td>52</td>
</tr>
<tr>
<td>proportion</td>
<td>0.77</td>
</tr>
<tr>
<td>Bike riding</td>
<td>69</td>
</tr>
<tr>
<td>proportion</td>
<td>0.74</td>
</tr>
<tr>
<td>Horse riding</td>
<td>67</td>
</tr>
<tr>
<td>proportion</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Expressing the numbers who were free of pain against the total number gave the sport Comfort Rating (see Table 4). For example, out of 69 subjects, 37 said they were pain-free when bike riding, resulting in a comfort rating of 0.5 (see Table 4).

Table 4. Comfort rating: Those without pain/total number of volunteers

<table>
<thead>
<tr>
<th>Sport</th>
<th>Total number of volunteers</th>
<th>Numbers without pain</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dance</td>
<td>62</td>
<td>42</td>
<td>0.65</td>
</tr>
<tr>
<td>Gymnastics</td>
<td>34</td>
<td>25</td>
<td>0.72</td>
</tr>
<tr>
<td>Martial Arts</td>
<td>13</td>
<td>9</td>
<td>0.72</td>
</tr>
<tr>
<td>Bike riding</td>
<td>69</td>
<td>37</td>
<td>0.53</td>
</tr>
<tr>
<td>Horse riding</td>
<td>67</td>
<td>13</td>
<td>0.2</td>
</tr>
</tbody>
</table>

...the athletes appeared to hold dichotomous health models - The horsewomen practiced ‘conditioning monitoring’ for their horses, but adopted a ‘crisis management’ approach for their own health.

The discomfort index compares the number of painful areas against the number of athletes who participated in that sport. (see Table 5).

Table 5. Discomfort index: Number of pain area/number of athletes

<table>
<thead>
<tr>
<th>Sport</th>
<th>Total number of volunteers</th>
<th>Number of painful areas</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnastics</td>
<td>24</td>
<td>8</td>
<td>0.34</td>
</tr>
<tr>
<td>Dance</td>
<td>52</td>
<td>19</td>
<td>0.37</td>
</tr>
<tr>
<td>Martial Arts</td>
<td>13</td>
<td>10</td>
<td>0.77</td>
</tr>
<tr>
<td>Horse riding</td>
<td>67</td>
<td>113</td>
<td>1.72</td>
</tr>
</tbody>
</table>

The discomfort index does not include the degree of discomfort but focuses on the areas reported when performing each sport. Surprisingly, horse-riding (index = 1.72) scored more than twice that of jockeying (index = 0.66). Perhaps participants in equine activities do not expect to be pain free (desensitization to the saddle and getting good balance is known as “acquiring a seat”), many of the riders admitted that skin on their seat bones bled from friction caused by the equestrian saddle.

Discussion

Athletes’ attitudes may parallel workers’ health views related to industrial tasks. In order to arrest, treat and prevent damage to the athlete, the sports physician/coach/educator (Moore & Cupit 2001) should have an understanding of the individual’s health concepts. Responses suggested that the athletes believed physical damage to their bodies had no lasting effects. They appeared to hold a view that there were no consequences once they had recovered from their accidents - limb fracture, concussion and various states of coma (see Table 2 & Figure 1).

From the unstructured interviews, the athletes appeared to hold dichotomous health models. The horsewomen practiced ‘conditioning monitoring’ for their horses, but adopted a ‘crisis management’ approach for their own health. The riders were assiduous in ensuring that their horses’ balance was checked on both sides, but they neglected their own by not changing arms when they bucked out stables or swept the yard. Over development on one side of the body may contribute to muscle imbalance and increased risk of sporting accidents (Masters 1999).

The belief model held by these athletes appeared to be based on ‘body performance’ being pain-free was synonymous with perfect health. The impression these young women gave was that they saw themselves to be ‘perfect’ and any injuries were discrete incidents building no long-term repercussions. This is in contrast with the view held by ergonomists that cumulative trauma produces a physical breakdown (cumulative trauma disorder, CTD, Kroemer 1989).

The sports physician/coach/educator should be aware of the athletes’ attitudes to self-healing and to the consequential problems of compliance with instruction. It would appear that the belief that was held when the symptoms were gone, the problem must have gone, therefore there is no need to continue preventative measures. Further research is needed to explore this dichotomy of approach to health by athletes.

Sporting history

The athletes’ sporting history suggests that they tried out various sports, presumably to challenge themselves, and to assess their own abilities. The volunteers’ attempted and rejected different sports. Certain sports activities may have a “carry-over”, enhancing or reducing performance. Ballet dancing requires hip turn-out, but correct horse riding requires the feet to turn inwards. Some volunteers left horse riding to concentrate on dance for this very reason. Conversely, turning the feet in brings the pelvis deeper into the saddle. Whereas, turning out the feet uses external rotators of the hip and so lifts the pelvis out of the saddle – a common riding fault in novice riders. By so doing, the subjects may be unconsciously protecting the pelvic floor (Boisrach & Hall 1985). This action paralyses the rider in dressage competition. By lifting the pelvis off the saddle causes rider instability, and this may contribute to riding and cycling accidents, (Mellion 1991, Boivin & Anderson 1992) as well as producing saddle overuse injuries.

Body position

Body position may also affect performance (Kyle & Caioros 1986, Too 1990). This raises a general ergonomic problem where continuous
body action may affect the athletes’ or animals’ body shape and consequently their health (Watt, 1984; Schmidt & Howard 1989). The list is long for areas of pain experienced when bike riding (see Table 3). This echoes the Brotin and Andersen (1992) report of problems during the 300 mile cycle race – from simple chaffing, skin eruptions, pudendal neuropathy, impotemis, traumatic urethritis and valva trauma. Improper fit of the saddle can also induce trochanteric bursitis, Biceps tendinitis, patellar-femoral pain syndrome. Foot paraesthesia, metatarsalgia, Achilles’ tendinitis and plantar fasciitis, have been reported by Mellite (1993). In spite of these problems, horse riders’ responses suggested that there were levels of pain and these were seen to be normal and acceptable. Comfort rating and pain index scales were constructed, (see Tables 3, 4 & 5). Surprisingly, horse-riding had the lowest comfort rating score and the highest discomfort index over martial arts and gymnastics. Some riders reported during the unstructured interviews that they bled from chaffing due to friction and pressure sores, while others appeared to be inured to the shape of the saddle.

The mechanics of tissue compression explored by Minus & Sutton (1982) and by Nelham (1984) suggest that release of pressure causes further chemico-neuro-mechanical events, where maximal discomfort occurs days later with the cessation of the activity.

Further investigation into the neuro-physiology of cyclic tissue compression and release is needed. With the responses from the athletes and using considerations based on Hussain (1983), Kissiak (1995) and Brand’s (1995) experiments, the response to exposure to tissue compression and discomfort in sport is suggested below in a network of responses (see Figure 2). There is a complicated picture of habituation, avoidance, de-sensitization, and perceived comfort. It is postulated that a cycle of events may occur where the body learns both psychologically and neuro-physiologically to adapt to sporting equipment in spite of discomfort. This may have wider applications such as acquiring a new motor skills, performing repetitive actions.

Figure 2. Network diagram: A suggested complex relationship - exposure to habituation.

Body and trauma in sport appeared to be both expected and accepted - This suggests that pain is deemed to be normal for sport (no pain = no gain)

The implication was that the athletes believed that ‘when pain had gone, the problem must have gone - therefore there are no lasting consequences’. If these attitudes are universally held, this could explain reduced compliance with preventative measures suggested by the sports physician/coach/educator.

Participants may judge their health only by their immediate performance and may not consider the long term effects of repeated minor damage.

Actions in one sport may enhance or detract performance in other activities.

Sport should be viewed as an industrial occupation in terms of the potential damage.

The numbers and the damage to athletes who have left the sport are not known - a confounding factor when examining injury from sporting activities.

The study offers an insight into the assumptions that athletes have about their own health. Further investigation should be undertaken into the health perceptions of the general public and in the ways for the physician/coach/educator could empower the individual in order to prevent present and future physical problems.

References


Selection for a particular sport does not always examine the athlete’s shape as an entry requirement.

Conclusions

It is generally accepted that sport is a healthy pastime, but the results question this concept. The old hunting adage that riding to hounds is ‘like warfare with 90% of the excitement but only 10% of the danger’, could apply to summarise the risks in many sports. The dangers are several in bike riding and horse-riding as these can be seen as being potentially contact / collision sports. Selection for a particular discipline does not examine the athlete’s shape as an entry requirement but concentrates on the novice’s aptitude. This is in contrast to ballet and equine selection, where the dancer’s or horse’s conformity is deliberately assessed with asymmetry being sufficient for rejection regardless of potential ability. This criterion may seem harsh but it is well known that asymmetrically shaped animals do not perform well, and later succumb to physical breakdown. Likewise, ballet schools do not want to invest in years of gruelling work that can be destroyed by the athlete’s potential prevalence to injury before the performer reaches their professional peak.

In conclusion:-

Many factors influence the choice of and the continuation in a particular sport

Injuries reported ranged from minor bruising to limp fracture and periods of coma

Micro-trauma over a period of time was not perceived to have the same potential as major traumatic events

The equestrian athletes appeared to hold dichotomous health concepts, one for their own body (crisis management) and one for the horse (prevention monitoring).

Discomfort and trauma in sport appeared to be both expected and accepted. This suggests that pain is deemed to be normal for sport (no pain = no gain)

The implications was that the athletes believed that ‘when pain had gone, the problem must have gone - therefore there are no lasting consequences’. If these attitudes are universally held, this could explain reduced compliance with preventative measures suggested by the sports physician/coach/educator.

Participants may judge their health only by their immediate performance and may not consider the long term effects of repeated minor damage.

Actions in one sport may enhance or detract performance in other activities.

Sport should be viewed as an industrial occupation in terms of the potential damage.

The numbers and the damage to athletes who have left the sport are not known - a confounding factor when examining injury from sporting activities.